Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells


Stem cells and biomaterials transplantation hold a promising treatment for functional recovery in spinal cord injury (SCI) animal models. However, the functional recovery of complete SCI patients was still a huge challenge in clinic. Additionally, there is no clinical standard procedure available to diagnose precisely an acute patient as complete SCI. Here, two acute SCI patients, with injury at thoracic 11 (T11) and cervical 4 (C4) level respectively, were judged as complete injury by a stricter method combined with American Spinal Injury Association (ASIA) Impairment Scale, magnetic resonance imaging (MRI) and nerve electrophysiology. Collagen scaffolds, named NeuroRegen scaffolds, with human umbilical cord mesenchymal stem cells (MSCs) were transplanted into the injury site. During 1 year follow up, no obvious adverse symptoms related to the functional scaffolds implantation were found after treatment. The recovery of the sensory and motor functions was observed in the two patients. The sensory level expanded below the injury level, and the patients regained the sense function in bowel and bladder. The thoracic SCI patient could walk voluntary with the hip under the help of brace. The cervical SCI patient could raise his lower legs against the gravity in the wheelchair and shake his toes under control. The injury status of the two patients was improved from ASIA A complete injury to ASIA C incomplete injury.
Furthermore, the improvement of sensory and motor functions was accompanied with the recovery of the interrupted neural conduction. These results showed that the supraspinal control of movements below the injury was regained by functional scaffolds implantation in the two patients who were judged as the complete injury with combined criteria, it suggested that functional scaffolds transplantation could serve as an effective treatment for acute complete SCI patients.

CLICK HERE to read the full article

Stem cell therapy for stress urinary incontinence

stem cells urinary

Stress urinary incontinence is the involuntary loss of urine on effort or physical exertion. It is a highly prevalent condition affecting both men and women. Treatment is performed in a step-wise approach involving conservative measures, such as weight loss and pelvic floor exercises, medical treatment with duloxetine and a variety of surgical treatment options.

However, recent restrictions in the use of synthetic mesh and tape have limited the surgical treatment options, leading to the need for new and novel treatment for stress urinary incontinence. Stem cell therapy is a developing medical field and offers the potential to restore normal physiological function of the urethral sphincter.

The effectiveness of stem cell therapy in stress urinary incontinence has been demonstrated in pre-clinical studies, leading to its evaluation in several clinical studies.

This review assesses the current evidence for the safety and efficacy of stem cell treatment for patients with stress urinary incontinence who have failed conservative and/or medical management and have not undergone previous surgical treatment for stress urinary incontinence.

CLICK HERE to read the full article

Clinical feasibility of umbilical cord
tissue-derived mesenchymal stem cells
in the treatment of multiple sclerosis

stem cells multiple sclerosis

Multiple sclerosis (MS) is a progressively debilitating neurological condition in which the immune system abnormally erodes the myelin sheath insulating the nerves. Mesenchymal stem cells (MSC) have been used in the last decade to safely treat certain immune and infammatory conditions.

Continue reading

A review: therapeutic potential of adipose- derived stem cells in cutaneous wound healing and regenaration

adipose tissue stem cells

As the most important barrier for the human body, the skin often suffers from acute and chronic injuries, especially refractory wounds, which seriously affect the quality of life of patients. For these refractory wounds that cannot be cured by various surgical methods, stem cell transplantation becomes an effective research direction. As one of the
adult stem cells, adipose-derived stem cells play an indispensable role in the repair of skin wounds more than other stem cells because of their advantages such as immune compatibility and freedom from ethical constraints. Here, we actively explore the role of adipose-derived stem cells in the repair of cutaneous wound and conclude that it can significantly promote cutaneous wound healing and regeneration. Based on a large number of animal and clinical trials, we believe that adipose-derived stem cells will have a greater breakthrough in the field of skin wound repair in the future, especially in chronic refractory wounds.

CLICK HERE to read the full article

Safety and efficacy of intracoronary human umbilical cord-derived mesenchymal stem cell treatment for very old patients with coronary chronic total occlusion

stem cells coronary chronic total occlusion

This study aimed to investigate the safety and feasibility of intracoronary injection of human umbilical cord mesenchymal stem cell to the very old patients with coronary chronic total occlusion 15 consecutive patients received mesenchymal stem cells from human umbilical cord in epicardial coronary artery supplying collateral circulation.

Continue reading

Human mesenchymal stem cell treatment
of premature ovarian failure: new
challenges and opportunities

stem cells premature ovarian failure

Premature ovarian failure (POF) is a common endocrine disease causing female infertility. It is characterized by high gonadotropin expression [follicle-stimulating hormone (FSH) ≥ 40 mIU/mL], low estradiol (E2) expression, and follicular dysplasia in women aged less than 40 years [1].

Continue reading

Mesenchymal Stem Cells as a Bio Organ for
Treatment of Female Infertility

stem cells female infertility

Female infertility is a global medical condition that can be caused by various disorders of the reproductive system, including premature ovarian failure (POF), polycystic ovary syndrome (PCOS),endometriosis, Asherman syndrome, and preeclampsia. It affects the quality of life of both patients and couples. Mesenchymal stem cells (MSCs) have received increasing attention as a potential cell-based therapy, with several advantages over other cell sources, including greater
abundance, fewer ethical considerations, and high capacity for self-renewal and differentiation. Clinical researchers have examined the therapeutic use of MSCs in female infertility. In this review, we discuss recent studies on the use of MSCs in various reproductive disorders that lead to infertility.
We also describe the role of microRNAs (miRNAs) and exosomal miRNAs in controlling MSC gene expression and driving MSC therapeutic outcomes. The clinical application of MSCs holds great promise for the treatment of infertility or ovarian insufficiency, and to improve reproductive health for a significant number of women worldwide.

CLICK HERE to full the read article